Search results for "normal tissue damage"

showing 2 items of 2 documents

Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

2011

Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. I…

rac1 GTP-Binding ProteinCancer ResearchAnthracyclineDoxorubicin transportCardiac fibrosismedicine.medical_treatmentImmunologyPharmacologyBiologyDNA damage responsestatinsMiceCellular and Molecular NeuroscienceRho GTPasespolycyclic compoundsmedicineAnimalsDNA Breaks Double-StrandedMyocytes CardiacDoxorubicinLovastatinanthracyclinesCardiotoxicityAntibiotics AntineoplasticTroponin IConnective Tissue Growth FactorCell Biologymedicine.diseaseRatsCTGFDNA Topoisomerases Type IICytokinenormal tissue damageDoxorubicinOriginal Articlelipids (amino acids peptides and proteins)LovastatinAtrial Natriuretic FactorSignal Transductionmedicine.drugCell Death & Disease
researchProduct

Rac1 GTPase, a multifunctional player in the regulation of genotoxic stress response

2013

The Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the Ras-homologous (Rho) family of small GTPases, which transduce signals from the outside to the inside of a cell. Rac1 becomes activated upon ligand binding of a variety of receptors, including receptor tyrosine kinases and heterotrimeric G-protein-coupled receptors. After GTP loading by guanine exchange factors (GEFs), GTP-bound Rac1 engages numerous effector proteins, thereby eventually regulating cell motility and adhesion, cell cycle progression through G1, mitosis and meiosis, as well as cell death and metastasis.1 Besides, Rac1 adjusts cellular responses to genotoxic agents, such as UV light and alkylating agents, by r…

Malerac1 GTP-Binding Proteintopoisomerase IIAgingRHOADNA repairDNA damagep38 mitogen-activated protein kinasesApoptosisRAC1Editorials: Cell Cycle FeaturesDNA damage responseReceptor tyrosine kinasechemical carcinogenesisHistonesMiceTransforming Growth Factor betaRho GTPasesAnimalsMolecular BiologyTranscription factoranthracyclinesMice KnockoutbiologyKinaseNeuropeptidesConnective Tissue Growth FactorHMG-CoA reductase inhibitors (statins)Cell BiologyFibrosisgenotoxic stressActinsrac GTP-Binding ProteinsCell biologyOxidative Stressnormal tissue damageGene Expression RegulationLiverBiochemistryDoxorubicinGamma Raysbiology.proteinFemaleDNA DamageMutagensSignal TransductionDevelopmental BiologyCell Cycle
researchProduct